Green Crude: The Quest To Unlock Algae’s Energy Potential

Editor’s Note: EarthTechling is proud to repost this article courtesy of Yale Environment 360. Author credit goes to Marc Gunther.

Tiny Columbus, New Mexico (population, 1,678) is hot, flat and uncrowded — an ideal place to launch a new green revolution in agriculture. That, in essence, is what a well-funded startup company called Sapphire Energy wants to do: It is turning a 300-acre expanse of desert scrub into the world’s largest algae farm designed to produce crude oil. Sapphire began making oil there in May, and its goal is to produce about 100 barrels a day, or 1.5 million gallons a year, of oil, once construction of the “green crude farm” is completed next year.

“We take algae, CO2, water and sunlight, and then we refine it,” says Cynthia Warner, the chief executive of Sapphire, who joined the company after working for more than 20 years at oil-company giants Amoco and BP. Algae, she says, has the potential to change the world, by reducing carbon dioxide emissions and enabling almost any country to make its own oil. “This technology is so compelling — and it will make such a big difference — that, once it gets out of the gate, it will ramp up very quickly,” Warner says.

Sapphire is one of scores of companies worldwide that today are making biofuels from microalgae, albeit on a small scale, according to the Algae Biomass Organization, a trade group. Solazyme, which is arguably the industry leader, last year sold an algae-derived jet fuel to United Airlines, which used it to fly a Boeing 737-800 from Houston to Chicago — the first time a commercial jet flew using a biofuel made using algae. Synthetic Genomics, a company founded by geneticist J. Craig Venter and financed by ExxonMobil, is building an algae farm in the Imperial Valley of southern California. Other algae farms are under development in Hawaii, by Phycal, and in Karratha, Australia, by Aurora Algae, and in Florida, by Algenol. In Europe, the Swedish energy company Vattenfall and Italy’s Enel Group have been using algae, which is then made into fuel or food, to absorb greenhouse gas emissions from power plants, and Algae-Tec, an Australia-based company, has agreed to operate an algae-based biofuel plant in Europe to supply Lufthansa with jet fuel.

algal biofuels

Algae researcher in 2009 (image via Sandia National Laboratories)

Although scientists and entrepreneurs have been trying to unlock the energy potential of algae for more than three decades, they don’t yet agree on how to go about it. Some companies grow algae in ponds, others grow them in clear plastic containers, and others keep their algae away from sunlight, feeding them sugars instead. To improve the productivity of the algae, some scientists use conventional breeding and others turn to genetic engineering. “Algae is the most promising source of renewable transportation fuel that we have today,” says Steve Kay, a distinguished professor of biology at the University of California, San Diego, and co-founder of the San Diego Center for Algae Biotechnology, a partnership of research institutions, business, and government.

And yet there’s plenty of reason for skepticism about algae. Scientists and entrepreneurs have been trying for decades to unlock algae’s energy potential, with mixed results. After the 1970s oil shocks, the U.S. government created an algae research program that analyzed more than 3,000 strains of the tiny organisms; the program was shut down in 1996, after the Department of Energy concluded that algal biofuels would cost too much money to compete with fossil fuels. A decade later, after President George W. Bush declared that the U.S. is “addicted to oil,” government research into algae was restarted, and venture capital flowed into dozens of algae startups. Oil companies ExxonMobil and Chevron placed bets, too.

But algae companies haven’t made much oil yet: Sapphire’s annual production target of 1.5 million gallons for 2014 compares to U.S. daily oil consumption of 18.8 million barrels. Even algae’s most enthusiastic advocates say that commercialization of algal biofuels, on a scale that that would matter to the environment or the energy industry, is at least five to 10 years away.

Yale Environment 360 is an online magazine offering opinion, analysis, reporting and debate on global environmental issues. We feature original articles by scientists, journalists, environmentalists, academics, policy makers, and business people, as well as multimedia content and a daily digest of major environmental news. Yale Environment 360 is published by the Yale School of Forestry & Environmental Studies and Yale University. We are funded in part by the Gordon and Betty Moore Foundation and by the John D. and Catherine T. MacArthur Foundation.